Gauging of Geometric Actions and Integrable Hierarchies of KP Type

نویسنده

  • E. Nissimov
چکیده

This work consist of two interrelated parts. First, we derive massive gauge-invariant generalizations of geometric actions on coadjoint orbits of arbitrary (infinite-dimensional) groups G with central extensions, with gauge group H being certain (infinite-dimensional) subgroup of G. We show that there exist generalized “zero-curvature” representation of the pertinent equations of motion on the coadjoint orbit. Second, in the special case of G being Kac-Moody group the equations of motion of the underlying gauged WZNW geometric action are identified as additional-symmetry flows of generalized Drinfeld-Sokolov integrable hierarchies based on the loop algebra Ĝ. For Ĝ = ŜL(M +R) the latter hiearchies are equivalent to a class of constrained (reduced) KP hierarchies called cKPR,M , which contain as special cases a series of well-known integrable systems (mKdV, AKNS, Fordy-Kulish, Yajima-Oikawa etc.). We describe in some detail the loop algebras of additional (non-isospectral) symmetries of cKPR,M hierarchies. Apart from gauged WZNW models, certain higher-dimensional nonlinear systems such as Davey-Stewartson and N -wave resonant systems are also identified as additional symmetry flows of cKPR,M hierarchies. Along the way we exhibit explicitly the interrelation between the Sato pseudo-differential operator formulation and the algebraic (generalized) Drinfeld-Sokolov formulation of cKPR,M hierarchies. Also we present the explicit derivation of the general Darboux-Bäcklund solutions of cKPR,M preserving their additional (non-isospectral) symmetries, which for R = 1 contain among themselves solutions to the gauged SL(M + 1)/U(1)× SL(M) WZNW field equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coisotropic deformations of associative algebras and dispersionless integrable hierarchies

The paper is an inquiry of the algebraic foundations of the theory of dispersionless integrable hierarchies, like the dispersionless KP and modified KP hierarchies and the universal Whitham’s hierarchy of genus zero. It stands out for the idea of interpreting these hierarchies as equations of coisotropic deformations for the structure constants of certain associative algebras. It discusses the ...

متن کامل

Nonlinear Integrable Systems

W algebras arise in the study of various nonlinear integrable systems such as: self-dual gravity, the KP and Toda hierarchies, their quasi-classical (or dispersionless) limit, etc. Twistor theory provides a geometric background for these algebras. Present state of these topics is overviewed. A few ideas on possible deformations of self-dual gravity (including quantum deformations) are presented.

متن کامل

Soliton Solutions of Integrable Hierarchies and Coulomb Plasmas

Some direct relations between soliton solutions of integrable hierarchies and thermodynamical quantities of the Coulomb plasmas on the plane are revealed. We find that certain soliton solutions of the Kadomtsev-Petviashvili (KP) and B-type KP (BKP) hierarchies describe two-dimensional one or two component plasmas at special boundary conditions and fixed temperatures. It is shown that different ...

متن کامل

Singular sector of the KP hierarchy, ∂̄-operators of non-zero index and associated integrable systems

Integrable hierarchies associated with the singular sector of the KP hierarchy, or equivalently, with ∂̄-operators of non-zero index are studied. They arise as the restriction of the standard KP hierarchy to submanifols of finite codimension in the space of independent variables. For higher ∂̄-index these hierarchies represent themselves families of multidimensional equations with multidimensiona...

متن کامل

Gauge Transformations and Reciprocal Links in 2 + 1

Generalized Lax equations are considered in the spirit of Sato theory. Three decompositions of an underlying algebra of pseudo-diierential operators lead, in turn, to three diierent classes of integrable nonlinear hierarchies. These are associated with Kadomtsev-Petviashvili, modiied Kadomtsev-Petviashvili and Dym hierarchies in 2+1 dimensions. Miura-and auto-BB acklund transformations are show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000